Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 14, 2026
-
Research on side-channel leaks has long been focusing on the information exposure from a single channel (memory, network traffic, power, etc.). Less studied is the risk of learning from multiple side channels related to a target activity (e.g., website visits) even when individual channels are not informative enough for an effective attack. Although the prior research made the first step on this direction, inferring the operations of foreground apps on iOS from a set of global statistics, still less clear are how to determine the maximum information leaks from all target-related side channels on a system, what can be learnt about the target from such leaks and most importantly, how to control information leaks from the whole system, not just from an individual channel. To answer these fundamental questions, we performed the first systematic study on multi-channel inference, focusing on iOS as the first step. Our research is based upon a novel attack technique, called Mischief, which given a set of potential side channels related to a target activity (e.g., foreground apps), utilizes probabilistic search to approximate an optimal subset of the channels exposing most information, as measured by Merit Score, a metric for correlation-based feature selection. On such an optimal subset, an inference attack is modeled as a multivariate time series classification problem, so the state-of-the-art deep-learning based solution, InceptionTime in particular, can be applied to achieve the best possible outcome. Mischief is found to work effectively on today's iOS (16.2), identifying foreground apps, website visits, sensitive IoT operations (e.g., opening the door) with a high confidence, even in an open-world scenario, which demonstrates that the protection Apple puts in place against the known attack is inadequate. Also importantly, this new understanding enables us to develop more comprehensive protection, which could elevate today's side-channel research from suppressing leaks from individual channels to controlling information exposure across the whole system.more » « less
-
In this paper, we present HYPERRACE, an LLVM-based tool for instrumenting SGX enclave programs to eradicate all side-channel threats due to Hyper-Threading. HYPERRACE creates a shadow thread for each enclave thread and asks the underlying untrusted operating system to schedule both threads on the same physical core whenever enclave code is invoked, so that Hyper-Threading side channels are closed completely. Without placing additional trust in the operating system’s CPU scheduler, HYPERRACE conducts a physical-core co-location test: it first constructs a communication channel between the threads using a shared variable inside the enclave and then measures the communication speed to verify that the communication indeed takes place in the shared L1 data cache—a strong indicator of physical-core co-location. The key novelty of the work is the measurement of communication speed without a trustworthy clock; instead, relative time measurements are taken via contrived data races on the shared variable. It is worth noting that the emphasis of HYPERRACE’s defense against Hyper-Threading side channels is because they are open research problems. In fact, HYPERRACE also detects the occurrence of exception- or interrupt-based side channels, the solutions of which have been studied by several prior works.more » « less
An official website of the United States government

Full Text Available